This documentation is automatically generated by online-judge-tools/verification-helper
// "https://atcoder.jp/contests/abc138/tasks/abc138_f"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#include "digitDP/ADFA/digit_dp_adfa.hpp"
#include "digitDP/ADFA/geq_adfa.hpp"
#include "digitDP/ADFA/leq_adfa.hpp"
#include "digitDP/ProductofDFA/product_of_adfa.hpp"
#include "digitDP/ProductofDFA/same_msd.hpp"
#include "digitDP/ProductofDFA/leq_digits.hpp"
#include "digitDP/intersection.hpp"
#include "other/mint.hpp"
constexpr int MOD = 1e9 + 7;
struct Monoid {
using T = mint<MOD>;
T val;
bool undef = true;
Monoid() { *this = zero(); }
Monoid(T val, bool undef = true) : val(val),
undef(undef) {}
static Monoid zero() { return Monoid(0); }
static Monoid e() { return Monoid(1,false); }
Monoid& operator+=(const Monoid &a) {
if (this->undef) *this = a;
else if (!a.undef) this->val += a.val;
return *this;
}
Monoid& operator*=(int c) {
return *this;
}
friend Monoid operator+(const Monoid& a, const Monoid& b) {
return Monoid(a) += b;
}
friend Monoid operator*(const Monoid& a, int c) {
return Monoid(a) *= c;
}
friend std::ostream& operator<<(std::ostream &os, const Monoid &x) {
return os << x.val;
}
};
string binarynumber(long long x, int len = -1) {
string res;
while(x) {
if (x&1) res.push_back('1');
else res.push_back('0');
x>>=1;
}
while((int)res.size() < len) res.push_back('0');
reverse(res.begin(), res.end());
return res;
}
int main() {
ll l,r;cin >> l >> r;
string sl = binarynumber(l,64);
string sr = binarynumber(r,64);
auto M1 = GeqADFA(sl,true,2);
auto M2 = LeqADFA(sr,true,2);
auto M3 = ProductofADFA(M1,M2);
auto M4 = SameMSDAutomaton(2);
auto M5 = LeqDigitsAutomaton(2);
auto M6 = IntersectionAutomaton(M4,M5);
auto M7 = IntersectionAutomaton(M3,M6);
cout << digitDP<Monoid>(M7) << endl;
return 0;
}
#line 1 "test/atcoder/ABC138_F.cpp"
// "https://atcoder.jp/contests/abc138/tasks/abc138_f"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#line 3 "digitDP/automaton.hpp"
struct Automaton {
std::vector<std::vector<int>> delta;
std::vector<bool> is_accept;
int qsize;
int init;
int alphabet_size = 10;
inline int next(int state, int c) const { return delta[state][c]; }
inline bool accept(int state) const { return is_accept[state]; }
inline int size() const {return qsize; }
};
#line 4 "digitDP/ADFA/digit_dp_adfa.hpp"
// ADFAが受理する文字列すべてについて求める
template<typename Monoid>
Monoid digitDP(const Automaton &adfa) {
std::vector<int> indeg(adfa.size());
for (int i = 0; i < adfa.size(); i++) {
for (int c = 0; c < adfa.alphabet_size; c++) {
indeg[adfa.next(i,c)]++;
}
}
std::vector<Monoid> dp(adfa.size());
dp[adfa.init] = Monoid::e();
Monoid ans;
std::queue<int> que;
que.push(adfa.init);
while(!que.empty()) {
int state = que.front(); que.pop();
for (int c = 0; c < adfa.alphabet_size; c++) {
int next_s = adfa.next(state,c);
dp[next_s] += dp[state]*c;
indeg[next_s]--;
if (indeg[next_s] == 0) que.push(next_s);
}
if (adfa.accept(state)) ans += dp[state];
}
return ans;
}
#line 5 "digitDP/ADFA/geq_adfa.hpp"
// 辞書順s以上の長さ|s|の文字列を受理
// ADFA
struct GeqADFA : public Automaton {
private:
std::string str;
bool eq;
void initializer() {
qsize = (str.size()+1)*2;
init = 0;
set_delta();
set_is_accept();
}
void set_delta() {
delta.resize(qsize,std::vector<int>(alphabet_size,0));
for (int i = 0; i < str.size(); i++) {
int state = i<<1;
delta[state][str[i]-'0'] = state+2;
for (int c = 0; c < str[i]-'0'; c++) {
delta[state][c] = qsize-1;
}
for (int c = str[i]-'0'+1; c < alphabet_size; c++) {
delta[state][c] = state+1;
}
for (int c = 0; c < alphabet_size; c++) {
delta[state+1][c] = state+3;
}
}
for (int c = 0; c < alphabet_size; c++) {
delta[qsize-2][c] = qsize-1;
delta[qsize-1][c] = qsize-1;
}
}
void set_is_accept() {
is_accept.resize(qsize,false);
is_accept[qsize-2] = eq;
is_accept[qsize-3] = true;
}
public:
GeqADFA(std::string s, bool eq = true, int alpha_size = 10) : str(s),
eq(eq) {
assert(s.size() >= 1);
alphabet_size = alpha_size;
initializer();
}
};
#line 5 "digitDP/ADFA/leq_adfa.hpp"
// 辞書順s以下の長さ|s|の文字列を受理
// ADFA
struct LeqADFA : public Automaton {
private:
std::string str;
bool eq;
void initializer() {
qsize = (str.size()+1)*2;
init = 0;
set_delta();
set_is_accept();
}
void set_delta() {
delta.resize(qsize,std::vector<int>(alphabet_size,0));
for (int i = 0; i < (int)str.size(); i++) {
int state = i<<1;
delta[state][str[i]-'0'] = state+2;
for (int c = 0; c < str[i]-'0'; c++) {
delta[state][c] = state+1;
}
for (int c = str[i]-'0'+1; c < alphabet_size; c++) {
delta[state][c] = qsize-1;
}
for (int c = 0; c < alphabet_size; c++) {
delta[state+1][c] = state+3;
}
}
for (int c = 0; c < alphabet_size; c++) {
delta[qsize-2][c] = qsize-1;
delta[qsize-1][c] = qsize-1;
}
}
void set_is_accept() {
is_accept.resize(qsize,false);
is_accept[qsize-2] = eq;
is_accept[qsize-3] = true;
}
public:
LeqADFA(std::string s, bool eq = true, int alpha_size = 10) : str(s),
eq(eq) {
assert(s.size() >= 1);
alphabet_size = alpha_size;
initializer();
}
};
#line 4 "digitDP/ProductofDFA/product_of_adfa.hpp"
Automaton ProductofADFA(const Automaton &adfa, const Automaton &dfa) {
Automaton M;
M.alphabet_size = adfa.alphabet_size*dfa.alphabet_size;
std::unordered_map<long long,int> table;
std::vector<int> x = {adfa.init}, y = {dfa.init};
table[(long long)x[0]*dfa.size()+y[0]] = 0;
M.init = 0;
for (int i = 0; i < x.size(); ++i) {
M.delta.emplace_back(M.alphabet_size, -1);
M.is_accept.emplace_back(adfa.accept(x[i]) && dfa.accept(y[i]));
for (int c1 = 0; c1 < adfa.alphabet_size; c1++) {
for (int c2 = 0; c2 < dfa.alphabet_size; c2++) {
int c = c1*dfa.alphabet_size+c2;
int u = adfa.next(x[i],c1), v = dfa.next(y[i],c2);
long long ps = (long long)u*dfa.size()+v;
if (table.find(ps) == table.end()) {
table[ps] = x.size();
x.emplace_back(u);
y.emplace_back(v);
}
M.delta[i][c] = table[ps];
}
}
}
M.qsize = M.delta.size();
return M;
}
#line 3 "digitDP/ProductofDFA/same_msd.hpp"
// 最上位桁の数が一致する数字対(x,y)を受理
struct SameMSDAutomaton : public Automaton {
private:
int alpha_size;
void initializer() {
qsize = 3;
init = 0;
set_delta();
set_is_accept();
}
void set_delta() {
delta.resize(qsize,std::vector<int>(alphabet_size));
for (int c1 = 0; c1 < alpha_size; c1++) {
for (int c2 = 0; c2 < alpha_size; c2++) {
int c = c1*alpha_size+c2;
if (c1 == 0 && c2 == 0) delta[0][c] = 0;
else if (c1 == c2) delta[0][c] = 1;
else delta[0][c] = 2;
}
}
for (int c = 0; c < alphabet_size; c++) {
delta[1][c] = 1;
delta[2][c] = 2;
}
}
void set_is_accept() {
is_accept.resize(qsize,false);
is_accept[0] = is_accept[1] = true;
}
public:
SameMSDAutomaton(int alpha_size = 10) : alpha_size(alpha_size) {
alphabet_size = alpha_size*alpha_size;
initializer();
}
};
#line 3 "digitDP/ProductofDFA/leq_digits.hpp"
// 全桁xi<=yiとなる文字列対(x,y)を受理
struct LeqDigitsAutomaton : public Automaton {
private:
int alpha_size;
void initializer() {
qsize = 2;
init = 0;
set_delta();
set_is_accept();
}
void set_delta() {
delta.resize(qsize,std::vector<int>(alphabet_size));
for (int c1 = 0; c1 < alpha_size; c1++) {
for (int c2 = 0; c2 < alpha_size; c2++) {
int c = c1*alpha_size+c2;
if (c1 <= c2) delta[0][c] = 0;
else delta[0][c] = 1;
delta[1][c] = 1;
}
}
}
void set_is_accept() {
is_accept.resize(qsize,false);
is_accept[0] = true;
}
public:
LeqDigitsAutomaton(int alpha_size = 10) : alpha_size(alpha_size) {
alphabet_size = alpha_size*alpha_size;
initializer();
}
};
#line 3 "digitDP/intersection.hpp"
// どちらにも受理されるような文字列を受理
Automaton IntersectionAutomaton(const Automaton &A, const Automaton &B) {
assert(A.alphabet_size == B.alphabet_size);
Automaton M;
M.alphabet_size = A.alphabet_size;
std::vector<std::vector<int>> table(A.size(), std::vector<int>(B.size(),-1));
std::vector<int> x = {A.init}, y = {B.init};
table[x[0]][y[0]] = 0;
M.init = 0;
for (int i = 0; i < (int)x.size(); ++i) {
M.delta.emplace_back(M.alphabet_size, -1);
M.is_accept.emplace_back(A.accept(x[i]) && B.accept(y[i]));
for (int c = 0; c < A.alphabet_size; c++) {
int u = A.next(x[i],c), v = B.next(y[i],c);
if (table[u][v] == -1) {
table[u][v] = x.size();
x.emplace_back(u);
y.emplace_back(v);
}
M.delta[i][c] = table[u][v];
}
}
M.qsize = M.delta.size();
return M;
}
#line 2 "other/mint.hpp"
template< int MOD >
struct mint {
public:
unsigned int x;
mint() : x(0) {}
mint(long long v) {
long long w = (long long)(v % (long long)(MOD));
if (w < 0) w += MOD;
x = (unsigned int)(w);
}
mint(std::string &s) {
unsigned int z = 0;
for (int i = 0; i < s.size(); i++) {
z *= 10;
z += s[i] - '0';
z %= MOD;
}
x = z;
}
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint& operator+=(const mint &a) {
if ((x += a.x) >= MOD) x -= MOD;
return *this;
}
mint& operator-=(const mint &a) {
if ((x -= a.x) >= MOD) x += MOD;
return *this;
}
mint& operator*=(const mint &a) {
unsigned long long z = x;
z *= a.x;
x = (unsigned int)(z % MOD);
return *this;
}
mint& operator/=(const mint &a) {return *this = *this * a.inv(); }
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs.x == rhs.x;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs.x != rhs.x;
}
friend std::ostream& operator<<(std::ostream &os, const mint &n) {
return os << n.x;
}
friend std::istream &operator>>(std::istream &is, mint &n) {
unsigned int x;
is >> x;
n = mint(x);
return is;
}
mint inv() const {
assert(x);
return pow(MOD-2);
}
mint pow(long long n) const {
assert(0 <= n);
mint p = *this, r = 1;
while (n) {
if (n & 1) r *= p;
p *= p;
n >>= 1;
}
return r;
}
// 存在しない場合0を返す(二乗して確認).
// O(log^2MOD)
mint sqrt() const {
if (this->x < 2) return *this;
if (this->pow((MOD-1)>>1).x != 1) return mint(0);
mint b = 1, one = 1;
while (b.pow((MOD-1) >> 1) == 1) b += one;
long long m = MOD-1, e = 0;
while (m % 2 == 0) m >>= 1, e += 1;
mint x = this->pow((m - 1) >> 1);
mint y = (*this) * x * x;
x *= (*this);
mint z = b.pow(m);
while (y.x != 1) {
int j = 0;
mint t = y;
while (t != one) j += 1, t *= t;
z = z.pow(1LL << (e-j-1));
x *= z; z *= z; y *= z; e = j;
}
return x;
}
};
#line 14 "test/atcoder/ABC138_F.cpp"
constexpr int MOD = 1e9 + 7;
struct Monoid {
using T = mint<MOD>;
T val;
bool undef = true;
Monoid() { *this = zero(); }
Monoid(T val, bool undef = true) : val(val),
undef(undef) {}
static Monoid zero() { return Monoid(0); }
static Monoid e() { return Monoid(1,false); }
Monoid& operator+=(const Monoid &a) {
if (this->undef) *this = a;
else if (!a.undef) this->val += a.val;
return *this;
}
Monoid& operator*=(int c) {
return *this;
}
friend Monoid operator+(const Monoid& a, const Monoid& b) {
return Monoid(a) += b;
}
friend Monoid operator*(const Monoid& a, int c) {
return Monoid(a) *= c;
}
friend std::ostream& operator<<(std::ostream &os, const Monoid &x) {
return os << x.val;
}
};
string binarynumber(long long x, int len = -1) {
string res;
while(x) {
if (x&1) res.push_back('1');
else res.push_back('0');
x>>=1;
}
while((int)res.size() < len) res.push_back('0');
reverse(res.begin(), res.end());
return res;
}
int main() {
ll l,r;cin >> l >> r;
string sl = binarynumber(l,64);
string sr = binarynumber(r,64);
auto M1 = GeqADFA(sl,true,2);
auto M2 = LeqADFA(sr,true,2);
auto M3 = ProductofADFA(M1,M2);
auto M4 = SameMSDAutomaton(2);
auto M5 = LeqDigitsAutomaton(2);
auto M6 = IntersectionAutomaton(M4,M5);
auto M7 = IntersectionAutomaton(M3,M6);
cout << digitDP<Monoid>(M7) << endl;
return 0;
}